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Abstract—The variety of mobile operating systems available in
the market has led to the emergence of cross-platform frameworks,
which simplify the development and deployment of mobile
applications across multiple platforms simultaneously. Among
these, the Flutter framework promoted by Google has become a
widely used cross-platform development framework. To date, no
work has provided support for the static analysis of Flutter apps
on the Android platform. State-of-the-art static analyzers fail to
“see” the implicit invocation between the Dart language used by
the Flutter framework and the Dalvik bytecode (DEX) used by
the native Android platform, posing a significant threat to the
completeness of the mobile software analysis.

In this paper, we present GlassWing, the first tailored approach
to static analysis for Flutter Android apps. GlassWing leverages
a data-flow-oriented approach to conduct key program semantic
extraction of Flutter apps and discloses the implicit Dart-DEX
invocation relations, thereby making cross-language invocation
visible. Extensive evaluation on 1,023 popular real-world Flutter
apps indicates that GlassWing enhances static analysis of Flutter
apps integrated with Soot by parsing 141% more Jimple code
lines, extending the call graph with more edges and nodes, and
revealing almost 3X potential sensitive data leaks that were
previously undetected with FlowDroid. GlassWing sheds light on
downstream research fields for Flutter apps (e.g., program graph
analysis, taint analysis, and malicious software analysis). Many
current and future Android analysis initiatives can be enhanced
by seamlessly incorporating GlassWing’s insights.

Index Terms—Static Analysis, Flutter Android Apps, Cross-
platform Framework

I. INTRODUCTION

After years of development, competition in the mobile
application market has reached an intense stage, with developers
striving to deliver their applications to a wider audience [1].
Currently, popular mobile operating systems (OSes) such as
Android [2f], iOS [3], and HarmonyOS [4] exist in the market,
requiring developers to build applications for each OS to
remain competitive [5]. However, developing and maintaining
applications across different OSes proves to be a non-trivial
task [6]. This process inadvertently slows down the delivery
pace of internet products that aim to respond quickly to
market changes. In response to this situation, cross-platform
development frameworks (e.g., Flutter [7], React Native [,
Weex [9]]), introduced a paradigm shift in deploying mobile
applications (named as cross-platform mobile apps) across
multiple mobile operating systems (named as platforms) [10].
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Fig. 1. Usage of identified cross-platform frameworks among the top
1,000 Android apps (ranked by downloads) on Google Play.

The core idea of development by cross-platform frameworks
is to develop each app once (in Dart [7]], JavaScript [11], etc.)
and then compile it for multiple platforms, thereby enhancing
development efficiency and consistency [12].

To gain insights into the current Android app market
landscape, we conducted a preliminary study of the annual
top 1,000 Android apps on Google Play [13[], ranked by
downloads from Sensor Tower [14] over the past five years.
As shown in Fig. [I} the adoption of the Flutter framework
has increased annually. We also conducted an empirical study
on 11,537 applications from Google Play: 1,023 are Flutter
apps (8.9%), 853 are React Native apps (7.4%), and 53 are
Weex apps (0.5%). Both studies suggest that Flutter is one
of the leading cross-platform development frameworks for
modern Android app development. Li et al. [1]] also find this
trend is even more pronounced in the Tencent App Storeﬂ
with nearly 50% Flutter app adoption. Impacted and backed
by Google, the Flutter framework utilizes Google’s custom-
developed Dart language and Skia rendering engine [7]. The
Flutter aplﬂ (in Dart) has stood out by achieving code execution
efficiency comparable to native Android apps (in Java/Kotlin),
creating a performance gap with other cross-platform apps (in
JavaScript) using frameworks like React Native and Weex [15]).
The endorsement from renowned companies such as Google,
eBay, Alibaba, Tencent, and TikTok has further fueled Flutter’s
rising popularity [[16]. However, academic exploration in
corresponding static analysis remains limited compared to the

Uhttps://appstore.tencent.com/
2Android apps developed using the Flutter framework



widespread practical use of the Flutter framework.

Samhi et al. [|17]] have highlighted that the most advanced
Android static analysis struggles to fully and automatically
handle the implicit invocation of methods by cross-platform
development frameworks. It is primarily because most static
analyzers are designed for natively developed Android apps.
For instance, analyzers such as FlowDroid [[18], IccTA [19],
Raicc [20], and DroidSafe [21] are unable to analyze cross-
platform Android apps, as they leverage Java/Kotlin static
analysis techniques to handle Dex bytecode [22]] in Android
apps [1]l, typically using the Jimple code as their intermediate
representation (IR) [23]] of the powerful Soot framework [24].
However, they do not support the languages used by frameworks
(Dart/JavaScript) and therefore cannot parse the corresponding
implicit invocations. To date, only a few efforts [25]—[27]] have
provided static analysis support for specific cross-platform
development frameworks (i.e., React Native) on the Android
platform. However, no existing work supports static analysis
for the Flutter Android apps, which is ahead-of-time (AOT) [/7]]
compiled into native ARM code [28]], employing platform
channel mechanisms [29] to facilitate interaction between Dart
code and Java/Kotlin code. React Native apps fundamentally
differ in programming languages (JavaScript), compilation
processes (Interpreted [30]), and framework architectures
(bridge [31] or JSI [32]) from the Flutter app (Dart, AOT,
channel). These differences imply that existing analyzers for
React Native apps cannot be directly applied to the Flutter
apps without addressing these unique challenges. Missing the
implicit invocations between the Android platform and the
Flutter framework leads to an incomplete analysis of the Flutter
app behavior (e.g., missing nodes and edges in the * [17].
Consequently, attackers can exploit these gaps to bypass
advanced static analysis tools like FlowDroid, concealing
malicious code. It highlights that even the most sophisticated
static analysis tools are ineffective if they rely on an unsound
model of the app [17].

To enable static analysis support for Flutter apps, a promising
direction involves extracting interaction behaviors of Dart and
Dalvik bytecode (DEX, compiled from Java/Kotlin [33]) and
disclosing implicit invocations between them. By doing so,
we can establish bi-directional communication and support
downstream applications (e.g., *G analysis, taint analysis, and
malware analysis) to better accommodate Flutter apps. However,
due to the intricate nature of cross-language interactions
inherent in cross-platform apps and language differences
between Dart and Java/Kotlin, we face the following challenges:
C1: Dart Semantics Extraction of Flutter Apps: For
Flutter app analysis, basic program semantics from both
the Dart and DEX sides are crucial. However, mainstream
decompilers [34]-[36] fail to analyze the compiled artifacts
of Dart due to its unique low-level structure (which differs
from C/C++) [37]], making it challenging to comprehend the

3We use *G to present the existing program analysis graphs, such as Call
Graph (CG), Control Flow Graph (CFG), Interprocedural Control Flow Graph
(ICFG), and Code Property Graph (CPG), etc.

basic code semantics essential for static analysis of Flutter apps.

C2: Cross-Language Implicit Invocation Identification: Dart-

DEX method calls are handled implicitly, without direct code

references, making it challenging to directly extract the cross-

language invocation. Consequently, the call edges that connect
the call relations between both sides are missing, preventing
the whole-app analysis.

To this end, to fill the gap of static analysis of Flutter Android
apps, we propose GlassWing. Inspired by the Glasswing
Butterfly [38]] (fluttering wings echo Flutter’s logo [7]), our
approach aims to achieve a thorough analysis of Flutter apps,
as clear as glass. To address C1, GlassWing presents a data-
flow-oriented method to conduct Dart semantic extraction.
GlassWing leverages a dedicated Dart machine code analyzer to
extract key program semantics related to Dart-DEX interaction,
tackling the intricate nature of Dart to pave the way for
cross-language analysis. To tackle C2, GlassWing thoroughly
analyzes the Dart-DEX call sites to discover the mappings for
implicit cross-language calls. Furthermore, it reconstructs the
explicit invocation relations between Dart code and Dalvik
bytecode. In this way, GlassWing establishes a unified Jimple
representation that restores cross-language invocation edges,
connecting Dart-DEX invocation relations, thereby making
cross-language invocations visible and enhancing static analysis
of the Flutter app.

To demonstrate the effectiveness of GlassWing, we conduct
experiments on our ground-truth benchmark and 1,023 real-
world Flutter apps, evaluating its ability to accurately extract
implicit invocations (RQ1), improve static analysis (RQ2),
and detect potential sensitive data leaks (RQ3). GlassWing
can accurately extracts implicit invocations and sensitive data
leaks in our benchmark. On real-world apps, it enhances static
analyzers by increasing the number of analyzed methods (by
36.7%), and extracting more call graph nodes (by 28.2%) and
edges (by 28.1%), and uncovering previously undiscovered
potential sensitive data leaks (nearly 3X), with an acceptable
performance overhead (RQ4). Our approach bridges the gap
in static analysis of Flutter apps and adapts to the evolving
mobile app landscape. The main contributions of our work are
summarized as follows:

e« We propose GlassWing, the first research work toward
conducting the static analysis of Flutter Android apps, which
supports cross-language communication between the native
Android platform and the Flutter framework.

« We present a data-flow-oriented approach to construct the
summarization of Dart-DEX interaction and disclose the
cross-language implicit invocation relations to enable static
analysis of Flutter Android apps.

o We have demonstrated the effectiveness of GlassWing in
identifying implicit invocations, enhancing existing static
analyzers, and revealing potential sensitive data leaks that
were previously undetectable in Flutter apps.

o GlassWing is fundamental work that bridges the gap in the
static analysis of Flutter Android apps, facilitating future
advancements. We have released our artifact and results on
GitHub website [39].
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II. PRELIMINARIES
A. The Flutter Framework

Flutter. Flutter is Google’s primary cross-platform development
framework and serves as the official SDK for Google’s next-
generation mobile operating system, Fuchsia [40]]. The core
idea of Flutter is to develop each app once in Dart [41] and then
compile it for multiple platforms (e.g., Android [2], iOS [3],
HarmonyOS [4]], etc.). In the Flutter compilation pipeline,
source code is initially parsed into an Abstract Syntax Tree
(AST), and subsequently transformed into the Dart intermediate
language (IL). This Dart IL is a lower-level representation than
the AST while remaining independent of specific hardware
platforms. Dart IL forms the basis for subsequent compilation
and optimization. Thereafter, Dart’s Ahead-of-Time (AOT)
compiler compiles the IL into native machine code for the target
platform, and packages it into a snapshot [42]. As shown in
Fig. 2] a compiled Flutter app consists of two dynamic libraries:
one is 1ibapp . so, which contains the main application logic
written in Dart, and the other is 1ibflutter. so, an engine
responsible for both runtime and rendering for the Flutter
framework written in C++ [7]. In the static analysis of Flutter
applications, it is necessary to separately extract the Flutter
Dart code (i.e., 1Libapp. so) and the Android Dalvik bytecode
(i.e., .dex files) from the APK file.

Platform Channel. Platform channel serves as a communi-
cation bridge between Flutter framework and the Android
platform, enabling Flutter apps to call native Java/Kotlin APIs
from Dart and, in return, receive the data or results from that
native Java/Kotlin code [43]]. Since Flutter only manages the
application rendering layer, system APIs cannot be supported
within the Flutter framework [44]. On the other hand, Flutter
is still a relatively young framework for Android, so some
mature Java/Kotlin libraries only used in the development of
the native Android platform (e.g., those for image processing
and audio/video codecs) have not yet been implemented in the
Flutter framework [45]]. Consequently, the Flutter framework
provides a lightweight solution for developers through the
platform channel mechanism. The platform channel exposes
the features of the native Android platform to Dart (Fig. [2)),
enabling Dart-DEX interaction as if a regular Dart API was
being called. Specifically, after a Flutter app declares the
platform channel (e.g., Fig. [3} expchannel in Line D1), both
the Flutter framework (e.g., Line D2) and native Android (e.g.,

Line J5) can reuse it. They can achieve cross-platform calls on
this channel by registering methods with specific names (i.e.,
getBatteryLevel), allowing the other side to invoke these
methods using the registered names. Thus, platform channels
essentially provide the mechanism of implicit invocations for
Flutter apps, without direct code references.

B. Motivating Example

Current Java-centric static analyzers [1]] for Android struggle
to adequately analyze cross-platform features within Flutter
apps. Fig. 3] illustrates an implicit call scenario. The Dart code
invokes the Leak method (i.e., get BatteryLevel in Line J7)
via the method channel (i.e., expchannel). This invocation
is not resolved within the Dart code; instead, it is implicitly
triggered by the Flutter framework to the corresponding method
in the Java code [17]]. As a result, no explicit call site for this
method exists within the Java codebase. Static analyzers [18]—
[20], [46]-[58] that rely on explicit call relations to construct
a call graph are therefore unable to establish a call edge to
the Java method in which the leak occurs. Consequently, the
method is erroneously identified as unreachable, leading to an
incomplete analysis result.

EBay Motors [59] is an exemplary application using the
Flutter framework officially endorsed by Google and has
amassed millions of installs across multiple platforms [16]]. This
app (v1.20.0) stores the Flutter Dart code in the 1ibapp.so
file. The disassembly of this shared library file generated a
417.7 MB text file with 12,895,862 lines of assembly. However,
existing research cannot analyze the Dart code due to the
inability of cross-platform analysis, leaving the 12,617 methods
in this file unanalyzed.

By constructing a call graph (CG) for Android Flutter appli-
cations, we explore the deficiencies in existing research [18]—-
[20] of disclosing the hidden logic on the native Android
Java side. Initially, we used FlowDroid [18]], Iccta [19], and
Raicc [20]] to generate a CG and perform taint analysis for
Motors 1.20.0. The best resulting CG contained 3,408 nodes
and 9,758 edges, with FlowDroid detecting no sensitive data
leaks. Flutter provides platform channels for Dart to access the
native Android platform, and further manual inspection of this
Flutter app revealed that 13 cross-platform methods exposed
on the Java side via platform channels were not included in the
CG. By manually submitting these Java channel methods as
entry points to FlowDroid, the CG expanded to include 6,931
nodes and 24,901 edges, identifying 12 instances of sensitive
data leaks.

Our motivation cases suggest that the relevance of established
static analyzers for Android apps to apps using the Flutter
framework is dubious [1]], [17]. Therefore, our development
community urgently needs specialized static analyzers for
applications built with the Flutter framework.

III. APPROACH

GlassWing enables the static analysis of Flutter Android apps,
uncovering the hidden code logic of Dart-DEX interaction.
Specifically, as illustrated in Fig. ] GlassWing takes APK
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Fig. 4. Overview of GlassWing.

files as input and employs a divide-and-conquer strategy.
For Android side, GlassWing utilizes Soot to convert Dalvik
bytecode into Jimple IR; whereas for Flutter Dart code, it
employs two innovative modules: (1) Dart Machine Code
Analyzer. This module progressively converts compiled Dart
code into Jimple IR, leveraging a data-flow-oriented extraction
of Dart semantics, specific to Dart-DEX interaction; and (2)
Channel Linker, which extracts cross-language implicit in-
vocations and establishes a unified Jimple IR that contains cross-
language invocation relations, connecting Dart and Java/Kotlin
invocation relations and facilitating the Dart-DEX interaction.
As the foundation of cross-language analysis of Android apps,
GlassWing supports Downstream Applications such as
*G analysis (Section [[V-B)), taint analysis (Section [[V-D), and
malware analysis (Section [V-A).

GlassWing pursues implementing static analysis in Flutter
apps, with a particular focus on Dart-DEX call relations and
data-flow relations. As effective data-flow analysis relies on a
well-designed IR, specific instruction types (i.e., Assign, Load,
Store, Call, and Ret) have been proven effective for analyzing
data flow [24], [60], [61]]. Therefore, following the principles of
existing IR designs, we define Core IR as a data-flow-oriented
extraction of Dart semantics in our context, built upon these five
key instructions to capture Dart-DEX interactions. GlassWing
also considers the general Dart code logic that affects data
before the interaction, which is important for the analysis
of data-flow relations. Notably, GlassWing Core IR refrains
from recovering all Dart source code details, avoiding full
decompilation, because undertaking full decompilation would
introduce redundant information irrelevant to our core task,
consequently increasing analysis complexity and potentially
yielding unreliable results.

A. Dart Machine Code Analyzer

The Dart machine code analyzer of GlassWing comprises
three steps: (1) Partial Recovery; (2) Core IR Conversion; and
(3) CorelR2Jimple Generation, following a progressive process
to advance the conversion to Dart-Jimple to facilitate a tailored
static analysis for Flutter apps.

1) Partial Recovery: GlassWing performs preliminary pro-
cessing on Dart AOT artifacts (in the form of Dart machine
code), converting them into a more analyzable Hybrid Rep-

resentation (HR) through the following three critical partial
recovery operations.

« Register Normalization: GlassWing normalizes register
variants of different bit widths (e.g., 64-bit X0 and 32-bit
WO0) into a canonical representation using logical registers
(e.g., R0O). This normalization allows the analysis to focus
on the register as a value container, irrespective of the
access bit width used in specific instructions.

« Object Pool Resolution: Dart utilizes an object pool
for object management [42]. Its assembly code typically
accesses objects via indices (i.e., indirect references)
rather than direct addresses, precluding reliance on direct
pointers or symbolic references to identify target objects.
So GlassWing parses the Dart snapshot, dumping the
object pool structure and object information. Subsequently,
it identifies indirect references through the object pool base
address register (X27), establishing mappings between
code instructions and the corresponding actual Dart objects
within the pool (e.g., Lines A6 to B6 of Fig. [5).

o Dart IL Recovery: Analyzing Dart machine code is
non-trivial due to its low level of abstraction. GlassWing
analyzes the compilation process of the Dart SDK to
investigate how Dart IL converts into particular Dart
machine code instruction sequences. Based on it, Glass-
Wing then builds a mapping by cataloging IL instructions
alongside their corresponding ARM instruction sequences.
Consequently, GlassWing recognizes these sequences
within the Dart machine code and replaces them with
the equivalent high-level IL instructions (e.g., Line Al to
B1, Line A3 to B3 of Fig. [3).

After partial recovery of the Dart AOT artifacts, the code is
represented as a Hybrid Representation (HR) (e.g., Block B of
Fig. 5).

2) Core IR Conversion: HR intertwines high-level IL
instructions (e.g., LoadField, StoreField) with remain-
ing low-level ARM instructions (e.g., mov, ldur), which
is impractical to directly perform data-flow analysis of Dart
code. This complexity introduces challenges for our data-flow-
oriented method. (1) The partially recovered HR contains many
types of instructions, making it challenging to directly capture
data-flow relations between HR instructions. (2) within HR,
Dart continues to utilize a hardware location (H L, e.g., registers
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Fig. 5. Processing flow of the Dart machine code analyzer.

or stack) to store and transfer values. H L is subject to reuse,
and values transfer among H L. Directly performing data-flow
analysis on H L renders the analysis complex and error-prone.
To overcome the analysis obstacles posed by the numerous
instruction types in HR, GlassWing converts these instructions
into Core IR. GlassWing leverages Algorithm [I] to depict
the procedure for converting HR to Core IR. The input is
the sequence of HR instructions (/ryr), and the output is
the list of Core IR instructions (I R.orc). Specifically, I Rcore
is first initialized as empty and gradually augmented during
the conversion. Virtual Register (V' R) is used to hold values
within the Core IR, in the format %X, with a counter cnt to
generate unique identifiers (e.g., $1, $2). Along with IR .,
a state map M is employed to maintain a mapping from VR
to the corresponding H L. By decoupling value from HL,
GlassWing overcomes the difficulties of performing data-flow
analysis directly on H L. For each instruction (¢nstr) in Igg,
GlassWing determines its type using semantic information,
and then executes different processing logic based on the type
(Lines 2-3). As VR is the container for the data flow, the
processing for each instruction type essentially involves how
GlassWing operates on V R. We summarize the operations on
V' R as allocation, substitution, and transfer, serving to capture
the data-flow relations of Dart.
e Virtual Register Allocation: If instr defines a new value
(e.g., Load, Assign, Call), GlassWing checks instr to identify
the pre-existing values serving as source operands (O Pg,..)
(Line 5). GlassWing summarizes O P;,.. as 3 types: constants,
values stored in H L, or return values of functions. If a O P,
is stored in a H L, GlassWing queries the state M to retrieve
its corresponding current V R for substitution. Then, a new VR
(VR,,) is allocated and named based on the current value of the
cnt (Line 6). GlassWing generates the corresponding Core IR
instruction that assigns the value derived from OP;,.. to VR,
(Line 7). Finally, M is updated by mapping the destination H L
(i.e., H Lg4.s¢) of instr to the V R,, (Lines 8-9). For example, in
Fig. @ consider the instruction at Line B3, where the OP,.. =
10 and the H Lg4cq is R2. A new VR, %2, is generated, and
the Core IR instruction $2 = 10 is created (Line C2). M adds
the mapping: R2 — %2.
e Virtual Register Substitution: If instr consumes a pre-
existing value and does not define a new value (e.g., Store,

Algorithm 1: Core IR Generation

Input: /5 r: Sequence of HR instructions
Output: IR ,re: Sequence of Core IR instructions
tent 1, M+ 0, [Reore + 0
2 foreach instr € Igr do

3 | switch SemanticType(insir) do
4 case ValueDefinition do
/I Virtual Register Allocation
5 O P, < FindSource(M, instr)
6 VR, +— “%ent”; ent +— ent + 1
7 IRcore.add(BuildIR(instr, V Ry, O Psr.))
8 HLgest < FindHL (M, instr)
9 M <+ UpdateMap(H Lgest, V R»)
10 case ValueUse do
/I Virtual Register Substitution
11 HL + FindHL(M, instr)
12 VR «+ FindVR(M, HL)
13 IRcore-add(BuildIR(instr, VR, HL))
14 case ValueTransfer do
// Virtual Register Transfer
15 HLgspc, HLgest < FindHL(M, instr)
16 V Rere < FindVR(M, H Lsrc)
17 M <+ UpdateMap(H Lgest, V Rsrc)
18 case Exclusions do
19 | continue

20 return I R.ore

Ret), GlassWing identifies the H L involved in the current
instr (Line 11), and retrieves the corresponding V' R stored for
these H L from the state M (Line 12). Finally, it replaces the
HL in instr with the retrieved V R (Line 13). For example,
in Fig. ] the instruction (Line B7) involves HL: R17 and
R2, and the V R (Line C5) currently mapped to them are $4
and %3 respectively. Then, the Core IR instruction store %4
to %$3.field_f is constructed.

e Virtual Register Transfer: If instr performs the value
transfer operation in H L, it will cause an update to state M
(e.g., register-to-register operation (MOV), and stack operations
(1dur and str)). To record the update of M and track the
data flow from different H L, GlassWing parses source and
destination HL (i.e., HL4.., HLg4.s) of these instructions
(Line 15). It then finds the V R,,.. associated with H L,
in M (Line 16). Finally, to reflect this transfer of VR, the



mapping in M for HLg.s is updated to HLgesy — V Rgpe.
(Line 17). For example, (Line B5 of Fig. E]), if RO (H Lgy¢)
currently maps to $3 (V Rs,.) (i.e., RO — %3), after R2 =
RO, GlassWing updates M of R2 (H Lgest) to R2 — %3.
o Exclusions: GlassWing skips annotations about stack frame
management (e.g., EnterFrame, LeaveFrame) or runtime
checks (e.g., CheckStackOverflow), as well as other
instructions not requiring representation at the Core IR level
(via the continue operation), since they do not directly
contribute to the data flow representation within the Core IR.
3) CorelR2]Jimple Generation: Leveraging the converted
Core IR as input, this step paves the way for GlassWing to
be supported by the standard Android analysis toolchain (e.g.,
Soot, FlowDroid). First, GlassWing performs the Java type
inference of the V R based on the type of the value assigned
at its initial definition (e.g., $2 can be inferred as type Int).
GlassWing determines the function’s return type based on the
type of the V R used in the return instruction (e.g., the return
type can be inferred as String from %6). If inference is not
possible, the default type java.lang.Object is utilized.
Next, GlassWing performs the ID resolution. It ascertains the
function’s name using symbol table information and determines
the Jimple method’s ID based on the previously inferred return
type. Subsequently, GlassWing executes the method body
generation. For each V R, it generates a local variable within
the method body. Then, based on predefined conversion rules,
GlassWing converts each Core IR instruction (Assign, Store,
Load, Call, Ret) into its corresponding Jimple statement
(assignment, field write, field read, invocation, return),
respectively (e.g., Block D of Fig. [3).

B. Channel Linker

So far, GlassWing converts native Android Java/Kotlin (AJ)
and Flutter Dart (FD) into Jimple code separately. However,
taking cross-language call relations into account, linking AJ and
FD is a key challenge. Dart-to-DEX calls in Flutter apps are
inherently implicit, without direct code references, hindering the
establishment of cross-language calls. To address the challenge,
GlassWing employs the channel linker (via channel resolution
as shown in Fig. [6) to disclose implicit Dart-to-DEX calls, as
platform channels expose features of Dart, facilitating cross-
language interaction. GlassWing establishes the actual Dart-
DEX call edges by refactoring channel methods into directly
invokable Jimple methods, ultimately linking the channel.

1) Cross-Language Mapping Extraction: Detecting cross-
language interactions is a prerequisite for conducting cross-
language analyses [62]. In Flutter apps, platform channels
provide the message-passing mechanism for cross-language
interaction. Crucially, this mechanism relies on implicit in-
vocation (as noted in Section [[I-A)), leading to no explicit
cross-language interaction (e.g., method calls), thus posing a
challenge to fully comprehend the interaction between AJ and
FD. Therefore, we must identify the implicit invocation relation
between the two sides to enable their interaction. Flutter apps
have their explicit call relations (i.e., callerp — calleep) on
separate sides (i.e., FD side), as shown in Fig. @ However,

----: Cross-language implicit invocation : Concrete implementation mapping

Concrete Implementation of (handler code block)

Android Java/Kotlin side Flutter Dart side
Concrete implementation <- - _@_ — <4~ can Call
of Calleep avern aTeeo

(a) The overview of interaction between Android Java/Kotlin and Flutter Dart.

Method Channel in Flutter Dart

D1 const channel = MethodChannel('expchannel');
D2 Future<Null> _getBatteryLevel() async —
D3 channel.invokeMethod('getBatteryLevel!' ,{"test"\: “hi"});
N
Concrete Implementation in native Android Java \
Ju  channel. setMethodcallHandler( !
'®
+

Js if (call.method.equals("getBatterylLevel")) {

J6 String test = call.argument("test"); @jgndl_er code block

J7 int batterylLevel = getBatterylLevel();

Js if (batteryLevel != -1) {result.success(batterylLevel);}

J9 else {result.error( "Battery unavailable.", null);}}) l
J10 public int expChannelgetBatterylLevel(Map) { handler methodl
Jil String test = Map("test");

J12 int batterylLevel = getBatteryLevel();
Ji3 if (batteryLevel != -1) {return batterylLevel;}
Jiu else { return( "Battery unavailable.", null);}}

(b) Implementation of Method Channel between native Android Java and Flutter Dart

Fig. 6. The interaction between Android platform and Flutter
framework (Channel Resolution).

due to development features of these apps, the explicit callee
methods (i.e., calleep) on the FD side have no concrete
implementation (called “virtual method” in this paper), leaving
the concrete implementation in the AJ side. In this step, we aim
to extract the call sites of each side and map the virtual methods
on one side to their concrete implementation on the other side
(ie., @ in Fig. [6), serving as a foundation for subsequent
method invocation relation construction in Section

Specifically, we analyze the code obtained from the previous
step to identify call sites and explicit method calls indepen-
dently on both sides. We illustrate the process in Fig. [6] To
elucidate the explicit call relations on separate sides (i.e.,
callers and virtual callees), we first locate instances of the
channel class, which are used to identify the call sides of
cross-language interaction methods in the code. We record
these instances along with the channel names used in cross-
language interactions (MethodChannel in Line D1). Next,
we track the control flow until we reach the call site of a channel
instance, flagged by the tnvokeM ethod. At this point, we have
identified the virtual methods, i.e., callee (get BatteryLevel
in Line D3). We then backtrack to the parent methods that call
these callees and note the caller on each side (Line D2). By
analyzing the virtual callee methods, we extract the label (e.g.,
“getBatteryLevel”) and its parameters, which are typically in
the form of a parameters map (e.g., {“test” : “hi”} in Line
D3). Then, GlassWing intends to identify the handler code
block of the invocation (i.e., concrete implementation) on the
opposite side, allowing to map the virtual methods and their
concrete implementations on the other side.



Subsequently, we trace the cross-references until we
reach the call site of a channel instance, flagged by the
setMethodCallHandler (Line J4), which is a callback
function used to handle method calls. We then analyze the
callback functions to extract logic that checks specific labels
(e.g., Line J5), and match them with the recorded virtual
methods to locate the corresponding code blocks that represent
the concrete implementations of the virtual methods from the
other side (e.g., Lines J6 ~ J9). Finally, we extract call sites
on each side and map the virtual methods to their concrete
implementations on the opposite side.

2) Cross-Language Method Invocation Construction: At
this point, GlassWing has established the mapping caller —
callee and callee — concret implementation of callee (i.e.,
handler code block). It seems that we can establish a mapping
from caller — concrete implementation of callee using
the two previous mappings; however, it only represents a
logical abstraction and cannot be directly used to construct
an invocation edge for static analysis. Without the concrete
invocation edge, static analyzers still cannot detect or trace
any Dart-DEX implicit invocations. Therefore, we need to
build the concrete invocation edge between caller and the
concrete implementation of callee (i.e., @ in Fig. [6), making
cross-language invocation visible. Nevertheless, it is challeng-
ing to construct the concrete invocation edge because the
concrete implementation of callee exists as a handler code
block rather than an actual method due to the implicit invocation
feature of the channel. As a result, the caller cannot directly
reference the handler code block, hindering the construction of
the concrete invocation edge. To overcome it, we refactor the
handler code block into a Jimple method (i.e., handler method)
to enable innovation.

Firstly, for the handler code block, we create a new empty
Jimple method (i.e., handler method) within the class of the
concrete implementation of callee (e.g., Lines J10 ~ J14).
This handler method is designed to accept a parameter (of
map type), which encapsulates all the call arguments from
the Dart call site (Line J10). The statements in the original
handler code block that read the call arguments are rewritten
to read from this map (Line J11). However, in Flutter apps,
methods across different channels may use the same label,
thus caller may invoke these methods with the same name,
leading to naming conflicts during invocation. To resolve it,
GlassWing combines the channel name and the extracted label
as the name of the handler method (Line J10). After that, we
must also address how the handler returns data back to the
caller through the Flutter channel’s result API. Furthermore,
the Flutter channel returns data to the caller through the result
API (Lines J8 ~ J9) [63]]. However, static analyzers struggle
to accurately model the data flow of the result API due to its
involvement with asynchronous callbacks [17]]. To address this
challenge, we convert the result API into a return statement
(Lines J13 ~ J14), which directly returns data in the current
execution stream. Finally, GlassWing sequentially inserts the
remaining statements from the handler code block into the
handler method. After refactoring the handler code block, we

establish a direct invocation edge between AJ and FD using
the handler method. Finally, GlassWing establishes the explicit
cross-language invocation and a unified Jimple presentation to
support subsequent analysis of the Flutter Android apps.

IV. EFFECTIVENESS EVALUATION

To evaluate the effectiveness of GlassWing, we aim to
conduct the experiments by answering the following research
questions (RQs).

« RQ1: How well can GlassWing identify platform channels?

« RQ2: How well can GlassWing enhance Soot-based static
analysis for Flutter Android applications?

+ RQ3: How effective is GlassWing in detecting previously
inaccessible potential sensitive data leakage issues in Flutter
Android applications?

« RQ4: How efficient is GlassWing on real-world apps?

We ran all our experiments on an Ubuntu computer with
two Intel Xeon Platinum 8378A CPUs and 1024GB RAM. For
implementation, GlassWing uses APKtool [64] to decompile
.dex file into Dalvik bytecode, and employs a modified
Blutter [65] as part of the Dart machine code analyzer. In
the pre-processing stage for FlowDroid, GlassWing outputs
Dart Jimple methods, integrating them into the Soot scene [24].
Subsequently, we register these methods as additional entry
points for FlowDroid, thereby extending its analysis scope.

A. RQI: Platform Channel Identification

1) Setup: To evaluate the effectiveness of GlassWing in
extracting cross-language invocation relations between Dart
and Java/Kotlin, we utilize platform channels as the evaluation
metric for RQI, as platform channels provide the mechanism
for implementing cross-language implicit invocations. To this
end, we select apps from the officially recommended open-
source Flutter examples [|16] to construct a ground truth dataset.
We evaluate the accuracy of GlassWing in identifying these
platform channels on our benchmark dataset. Leveraging the
proven capability, we then apply GlassWing to a real-world
dataset to observe the number of platform channels identified,
aiming to demonstrate GlassWing’s performance in identifying
cross-platform interactions in complex Flutter apps.

o Ground-Truth Benchmark: We select all 30 available open-
source example apps, recommended by Flutter officials
[16], to constitute our ground-truth benchmark. Given these
apps’ open-source nature, we conducted thorough manual
inspections to precisely identify and enumerate each platform
channel therein, and the result is cross-validated by three au-
thors. These manually validated platform channels constitute
the ground truth for evaluating the identification capability
of GlassWing. Concurrently, to facilitate the analysis of
sensitive data leaks for RQ3, we inject specific leaks into the
identified platform channel within the benchmark dataset.

o Real-World Dataset: To evaluate the effectiveness of Glass-
Wing in identifying platform channels in real-world apps,
we collected all APKs from the AndroZoo repository [66]
in 2024 and retained 11,537 apps after deduplicating. Given
that these apps may include apps not developed by the



Table I: Ground-Truth Benchmark

ID Name #Ch Ours|ID Name #Ch Ours|ID Name #Ch Ours
1 Telsavideo 1 1 |11 Weight Tracker 1 1 |21 Squawker 1 1
2 Amiibo 2 2 |12 Light Wallet 1 1 |22 Airdash 2 2
3 Authpass 1 1 |13 Jidoujishou 10 10 |23 Trireme 1 1
4 Immich 4 4 |14 Meditation 1 1 |24 Timy 5 5
5 Bluebubbles 1 1 |15 Yubico 17 17 |25 ShockAlarm 2 2
6 LibreTrack 2 2 |16 ServerBox 2 1 |26 Hacki 2 2
7 Osram 1 1 |17 ESSE 1 1 |27 Thingsboard 1 1
8 Kalium 1 1 |18 Vidar 2 2 |28 Lighthouse 3 3
9 Natrium 1 1 |19 Voiceliner 2 1 |29 Group-track 1 1
10 Blink Comp 2 2 |20 Cake Wallet 5 4 |30 Piggyvault 1 1
Total: 77 TP: 74 FP: 0 FN: 3

Precision: 100% Recall: 96.1%

TP = True Positive, FP = False Positive, FN = False Negative

Flutter framework, affecting the analysis result, we further

selected the Flutter apps by identifying the presence of

the 1ibapp. so file containing Dart code as the criterion.

Finally, we obtained a dataset of 1,023 real-world Flutter

apps for our analysis, including 72 popular Flutter apps

found among the top 1,000 apps on Google Play.

2) Result: As shown in Table I} across our ground-truth
benchmark apps, GlassWing achieved a recall of 96.1% (74/77)
for platform channel identification. Upon manual investigation,
all 74 channels reported by GlassWing were confirmed to
be true positives, achieving a precision of 100%. This result
demonstrates that GlassWing can accurately identify analyzable
platform channels, which in turn indicates its capability to
accurately extract implicit call relations in Flutter apps.

We further analyzed the platform channels (3) that Glass-
Wing failed to identify (i.e., false negatives), revealing two
reasons for these misses: (i) Unimplemented Handlers (2): The
channels are declared in the Dart code, but their corresponding
handler methods are not implemented on the DEX side. Since
these channels represent ineffective execution paths, their
exclusion does not influence GlassWing’s analysis. (if) Unused
Channels (1): These channels are implemented on the DEX
side but are never invoked from Dart code. Such channels
constitute dead code from a runtime perspective, and thus,
GlassWing excludes them from the set of analyzable channels.

On the real-world dataset, GlassWing identified 11,253
platform channels. To examine precision, we manually reviewed
100 platform channels (sampled to achieve a 95% confidence
level with a margin of error of £10%, ie., a« = 0.05,
E = 0.10), balancing practical effort [67]. The result con-
firmed all reviewed platform channels were true positives,
demonstrating GlassWing’s capability to extract the implicit
invocation relations in complex apps. The true positives results
are attributed to GlassWing’s design—specifically, its two-
sided validation strategy, which confirms a platform channel by
matching an invocation in Dart with its corresponding handler
method in Java/Kotlin.

To further provide insights into GlassWing’s performance in
identifying cross-platform interaction mechanisms in complex
Flutter applications, we analyzed different types of identified
channels. According to our analysis, GlassWing identifies that
each Flutter app uses an average of 8.4 MethodChannels, 0.3

EventChannels, and 2.3 BasicChannels. The MethodChannel
is the most commonly used channel (accounting for 76.4%),
serving as the primary interaction mechanism. It allows the
Flutter framework to perform method calls and data exchanges
with the native Android platform, which aligns with the
development needs of Flutter apps that require frequent method
calls [43]]. Furthermore, we observe that the vast majority
(65.7%) of platform channels in Flutter apps originate from
third-party plugins. Developers rely on these plugins, which
provide native features such as camera access and location
services, to simplify development and save time. However,
it highlights the need to consider the quality of third-party
plugins used for platform channels, which may introduce bugs
or security issues, posing a more severe impact than those
caused by the developer’s own code.

Answer to RQ1: On the ground-truth benchmark apps,
GlassWing accurately identified all analyzable platform
channels (i.e., implicit invocation relations). In complex
real-world scenarios, GlassWing also demonstrated its
effectiveness in identifying platform channels.

B. RQ2: Static Analysis Enhancement

1) Setup: To evaluate the effectiveness of GlassWing in
enhancing static analysis for Flutter applications, we integrated
GlassWing into the Soot framework and extended FlowDroid
to analyze the real-world dataset from RQ1 (i.e., 1,023 Flutter
apps, including the most popular 72 Flutter apps from the top
1,000 of Google Play). Since the static result produced by the
Soot framework heavily relies on the availability of the Jimple
code and the size of the call graph, followed by existing related
work [25], [33]], [68], we evaluate GlassWing from the two key
aspects: (i) the usability of the Jimple code, measured by the
number of SootMethods extracted and the lines of Jimple code
(LOCs), which is evaluated by comparing Soot with/without
GlassWing; (if) the size of the call graph, measured by the
number of nodes and edges, which is evaluated by comparing
Flowdroid with/without GlassWing. Note that, due to the time
and memory-intensive nature of FlowDroid analysis, following
existing work [25]], [33], [68]], we set a timeout of 30 minutes
per app for our experiments. The integration procedure is
mentioned in our implementation of evaluation (Section [IV).

Note that in this RQ, we do not set a ground-truth benchmark
for evaluation due to the vast number of SootMethods, lines of
Jimple code, and the nodes and edges in the call graph, making
it extremely difficult to collect data manually, thus making it
nearly impossible to design a reliable ground-truth benchmark.
Additionally, existing related work [25]], [33]], [68] also did
not provide a ground-truth benchmark for validation in this
context, thus our setup aligns with standard practices.

2) Result: Volume of Code and Methods: As shown in
Table [[} incorporating GlassWing results in an increase in the
number of SootMethod along with lines of Jimple code (LOCs)
extracted during static analysis. Specifically, the number of
methods extracted increased by 36.7%, from 37,715 to 51,556,
and the LOCs increased by 141%, from 624,990 to 1,506,226.



Table II: Average #Methods and #LOCs with/-out GlassWing

Soot Soot+GlassWing Improvement
#Added LOCs

881,236 (+141%)

#Methods #LOCs #Methods #LOCs #Added Methods

37,715 624,990 51,556 1,506,226 13,841 (+36.7%)

Table III: Average #Nodes and #Edges with/-out GlassWing

FlowDroid FlowDroid+GlassWing Improvement
#Nodes #Edges #Nodes #Edges #Added Nodes #Added Edges
5,327 21,757 6,830 27,887 1,503 (+28.2%) 6,130 (+28.1%)

This growth demonstrates that GlassWing effectively adds
executable code that traditional static analyzers do not consider,
enhancing the comprehensiveness of the analysis.

Size of the Call Graphs: Table |IlI| shows that FlowDroid
enhanced with GlassWing increases the size of the graph,
i.e., the number of nodes (i.e., methods) and edges (i.e.,
cross-language implicit invocation relations). According to
Table the average number of nodes increases by 28.2%,
from 5,327 to 6,830, and the number of edges increases by
28.1%, from 21,757 to 27,887. The increase indicates that
GlassWing successfully identifies a large number of previously
unreachable nodes and edges, enhancing code coverage. Note
that the channel represents the invocation relations between
the Flutter framework and the Android platform. However, due
to the reuse of channels, the call relations discussed in RQ1
constitute only a part of the edges counted in RQ2. To validate
the new graph additions, we manually inspected a random
sample of 96 new nodes and corresponding edges (o = 0.05,
E =0.10 [67]) via reverse engineering, confirming all of them
to be true positives. Furthermore, we computed graph expansion
metrics, which revealed that each newly introduced node is
associated with 4.1 new edges on average. This result indicates
that GlassWing adds meaningful and relevant call relations
rather than isolated noise nodes. GlassWing effectively analyzes
the executable code that traditional static analyzers overlook,
avoiding treating these parts of the code as dead code [[17],
thereby enhancing the analysis. The additional code contributes
to thoroughly identifying potential security vulnerabilities and
overcoming performance bottlenecks.

Answer to RQ2: GlassWing enhances the static analysis
of Flutter apps by discovering previously overlooked
executable code. GlassWing increases the number of
parsed methods by 36.7%, lines of Jimple code by 141%,
call graph nodes by 28.2%, and edges by 28.1% compared
to Soot and FlowDroid.

C. RQ3: Sensitive Data Leak Identification

1) Setup: To evaluate whether GlassWing can effectively
identify potential sensitive data leaks in Flutter apps, we
used the real-world datasets from RQ1. We also designed
a systematic injection scheme for our ground-truth benchmark
from RQI, tailored to the unique features of Flutter apps.
Specifically, we adopted the community-recognized SuSi [[69]
to categorize FlowDroid’s default sources and sinks into seven

source categories and three sink categories [67]]. Subsequently,
we injected data leaks into the corresponding DEX-side handler
methods for each known platform channel (one per channel,
74 in total), thus constructing our ground-truth benchmark for
RQ3. We verified that the injected leakage paths covered all
of the aforementioned source/sink categories, which underpins
the representativeness and systematicity. A complete list of all
injected source-sink pairs is detailed on our website [39]. Based
on the two datasets, we compared the number of potential leaks
detected by FlowDroid with/without GlassWing and the timeout
of FlowDroid is set to 30 minutes per app, as in RQ2.

2) Result: GlassWing with FlowDroid extracts all types of
sensitive data leaks in the ground-truth benchmark apps, with
no false positives and no false negatives. However, FlowDroid
alone fails to detect leaks on our benchmark, as it is not
designed to handle the cross-platform feature of Flutter apps.

On the real-world dataset, running FlowDroid alone detected
only 3.1 potential sensitive data leaks on average, while the
application of GlassWing resulted in an average detection of
8.4 potential sensitive data leaks, shown in Fig. |/| Our tool
enhances the detection capabilities for potential sensitive data
leaks in Flutter applications by bridging Dart-DEX interaction.

We manually verified the precision of the identified potential
sensitive data leaks on a statistically significant random sample
(o = 0.05, E = 0.10 [67]) via reverse engineering. Our
analysis revealed that 94.7% (90/95) of the data flows were
true positives. Regarding the five false positives: (i) three are
attributable to the inherent limitations of the underlying taint
analysis capability of FlowDroid [18]. (ii) The remaining two
false positives stem from the limitations in GlassWing’s current
handling of asynchronous operations. Specifically, our tool
currently adopts a conservative assumption for asynchronous
callbacks, which presumes that these callbacks are executed
immediately. In scenarios involving complex asynchronous
operations, this assumption can lead to infeasible data flows, a
well-known challenge in static analysis [52].

GlassWing analyzes the data flow of Flutter apps to identify
potential sensitive data leaks, further utilizing the SuSi [|69]]
classification to understand the nature of these leaks. SuSi’s
classification helps us systematically categorize the sources and
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sinks of leaks by feature, ensuring more precise localization
and data flow analysis. The most common source method was
<android.database.Cursor: java.lang.String getString(int)>,
occurring 838 times, suggesting that reading string data from
databases is the most frequent data source in Flutter apps.
Such prevalence is mainly because databases are central
components for storing and retrieving data in modern appli-
cation development. Flutter apps rely on dynamic data, being
frequently updated from databases, as seen in apps like social
media, shopping, and news reading. In a multi-device usage
environment, Flutter apps might need to synchronize data states
across different devices. Reading string data from databases
is an important step in syncing and updating information [70].
The most common sink method was <android.os.Bundle:
void putString(java.lang.String,java.lang.String>, occurring
285 times, typically used for passing string data between
different parts or components of an application. Such high
frequency is mainly because Flutter applications use Android’s
API to pass information through Intents carrying Bundles for
functionality implementation [71].

To better understand and visualize how the potential sensitive
data leaks discovered by GlassWing, we illustrated it using a
Sankey diagram (shown in Fig. [0). The main sources of sensi-
tive data leaks are Database, Location, and Telephony. Sensitive
information primarily leaks into Bundle, SharedPreferences,
and Activity. Indeed, our analysis shows the effectiveness of
GlassWing in identifying the potential sensitive data leaks of
complex Flutter apps.

Answer to RQ3: GlassWing can effectively help identify
potential sensitive data leaks in Flutter apps. It detects
all injected leaks in our ground-truth benchmarks and,
on average, detects nearly 3X more potential leaks per
app in the real-world dataset, revealing potential sensitive
data leaks that traditional analyzers overlook.

D. RQ4: Efficiency

1) Setup: In the complex real-world scenario (of the 1,023
apps), we evaluated the efficiency (in terms of memory and
time) of integrating GlassWing into FlowDroid, comparing the
results with the baseline of running FlowDroid standalone.

2) Result: Memory Overhead: As illustrated in Fig.
GlassWing integrated with FlowDroid consumed an average of
2.1 GB of memory (median: 1.7 GB), versus 1.9 GB (median:
1.4 GB) for the FlowDroid baseline, representing a 17.4%
memory overhead. Time Overhead: As shown in Fig. [T1]
GlassWing with FlowDroid took an average of 389.5s (median:
284.9s), compared to 204.3s (median: 139.9s) for the baseline.

We consider this overhead a reasonable and worthwhile
trade-off. In return, GlassWing enhances the analysis scope for
Flutter apps. Our dataset includes large-scale applications (e.g.,
Google Classroom, eBay Motors) from major companies (e.g.,
Google, eBay), and GlassWing proved capable of analyzing
them. The median overheads exhibit a moderate increase
(21.4% for memory, 103.6% for time), indicating the overhead
of GlassWing is manageable for the majority of apps. The
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higher average values, driven by a few large-scale applications,
highlight the scalability of GlassWing in its ability to process
these complex targets.

Answer to RQ4: GlassWing extends the scope of static
analysis for Flutter Android apps while introducing
an acceptable performance overhead, demonstrating its
reasonable scalability.

V. DISCUSSION

In this section, we offer an enriched perspective on Glass-
Wing by discussing its potential applications in Flutter malware
analysis, limitations and threats to validity.

A. Potential Application

Table IV: Average #Nodes and #Edges with/-out GlassWing
on 355 malwares

FlowDroid FlowDroid + GlassWing Improvement
#Nodes #Edges #Nodes #Edges #Added Nodes #Added Edges
7,317 37,738 7,733 39,577 416 (+5.7%) 1839 (+4.9%)

The immaturity of analysis techniques for the young Flut-
ter framework presents an exploitable avenue for malware
developers. By mid-2023, the Android Fluhorse [72] family
began directly implementing the malicious payload within the
Flutter codebase (called Flutter malware). It highlights a trend
where malware leverages framework features to evade detection.
Consequently, the in-depth analysis of Flutter malware emerges
as a potential application.

We attempt to use GlassWing for the analysis of Flutter mal-
ware, laying the foundation for future automated identification
of Flutter malware. Specifically, we downloaded all the APK
malware samples from the VirusShare [73|] database from 2020
to 2022 and identified 355 samples developed using the Flutter
framework. We analyzed these samples using GlassWing, which
showed an increase in the average number of nodes (+5.7%)
and edges (+4.9%) per sample after enhancement through
GlassWing (Table [[V). As shown in Fig. [§] we also employed
the GlassWing-enhanced FlowDroid to analyze the samples and
found that, on average, it revealed an additional 9.6 potential
leakage issues per sample. Additionally, we find that compared
to popular benign apps in Fig. [/ a higher number of potential
leaks are detected in malware, reflecting more potential issues
within the malware, which aligns with its tendency to engage
more extensively in the theft of sensitive user information.
Through the analysis provided by GlassWing, we can gain a
deeper understanding of the structure and behaviors of Flutter



malware in the future, thereby supporting the design of more
effective defense strategies.

B. Limitations and Threats to Validity

1) Limitations: Limitations of GlassWing stem from the
following aspects, which also highlight potential avenues for
future research.

o Advanced Dart Features. GlassWing’s design prioritizes
addressing the foundational challenge of analyzing cross-
language calls in Flutter apps. Consequently, support for
certain advanced Dart language features remains limited.
Specifically, GlassWing simplifies Dart’s asynchronous streams
to synchronous ones. The modeling of custom widget state
from internal mechanisms of the Ul framework and exception
handling is currently limited. To accommodate Dart’s dynamic
nature, GlassWing employs type inference to mitigate its impact.
In its current implementation, 51.3% of Dart types are resolved
to java.lang.Object.

e Lifecycle Modeling. GlassWing’s analysis focuses on meth-
ods pertinent to platform channel interactions and does not
currently model the component lifecycle. Consistent with prior
work [[17], [25]], [33]l, we assume that platform channels are
reachable throughout a component’s lifetime, which may cause
the static analyzer to miss lifecycle-dependent entry points.

e Code Obfuscation. Flutter current default obfuscation does
not alter platform channel name strings, thus leaving GlassWing
name-based identification method unaffected. However, when
facing more advanced obfuscation techniques, GlassWing
effectiveness may be impacted. For apps employing obfus-
cation beyond the default settings, we attempt to use existing
deobfuscation techniques [74]]-[76] to address them.

o Platform Plugin Support. Currently, GlassWing only supports
the analysis of Flutter Android apps, but the methodology
is also applicable to other platforms. We plan to extend our
support to more platforms in future work.

These limitations exist as fully supporting a new language is a
major undertaking, and many are known hard problems in static
analysis [77]. We plan to explore and address these challenges,
continuously maintaining GlassWing to ensure support for new
features and adaptation to the framework evolution.

2) Threats to Validity: (i) Evaluation on Real-World Apps.
For closed-source applications, obtaining complete ground truth
for binary-disassembly platform channels and data leaks is
inherently unattainable [77]], which limits our ability to conduct
recall analysis. To mitigate this threat, we instead evaluate
the recall of GlassWing using official open-source Flutter
apps as ground truth. For the precision analysis, we manually
validate the platform channels and leaks identified in our real-
world dataset. However, given the manual effort constraints,
we employ a random sample (o = 0.05, £ = 0.10 [67]) to
select a statistically representative subset for this verification.
(if) Manually Injected Leaks. The manually injected leaks in
our evaluation may pose a threat to the validity of GlassWing’s
leak-revealing capability. To mitigate this threat, we designed
a systematic injection scheme, guided by the community-

recognized SuSi [69]] categories and designed to cover all
leak types defined by FlowDroid’s default sources and sinks.

VI. RELATED WORK
A. Cross-Language Analysis of Android Apps

Current cross-language static analysis efforts target specific
cross-platform frameworks (i.e., React Native) [25]] and specific
interfaces (i.e., Java Native Interface (JNI)) [68]], [[78]-[83] to
identify interactions between DEX ¢ cross-platform frame-
work code (JavaScript) and DEX <> native code (C/C++),
converting components written in other languages into Jimple
code. Lee et al. [27] proposed the HybriDroid framework
to detect errors and information leaks in hybrid applications
by analyzing communication between Java and JavaScript.
More research has focused on cross-language analysis between
Java/Kotlin and native code (C/C++). Various works in Android
malware detection [[79]], dynamic taint analysis [[80]—[82], and
sensitive data leak detection [68]], [78] emphasize Native
Development Kit (NDK) analysis. However, they all overlook
the prevalence of cross-platform frameworks in current mobile
app development. To date, only a few efforts have provided
static analysis support for specific cross-platform frameworks
(i.e., React Native [25]]). Nevertheless, their methodologies
are not directly applicable to Flutter apps (Dart, AOT, implicit
call). To tackle the technical challenges, we introduce data-flow-
oriented summarization to uncover the implicit cross-language
calls and link them through our channel linker.

B. Static Analysis of Android Apps

Static analysis is an important means of evaluating Android
applications [18]—[20], [84]-[95]. Since the development of
Soot [24], it has become one of the most popular frameworks
for analyzing Android applications [96], with several tool
prototypes relying on Soot to perform their respective static
analyses. Many studies focus on detecting sensitive data
leaks [18]-[20]], [97]], identifying malicious behavior [89[—
[92]], and inter-component communication vulnerabilities [93[—
[95], [98]]. However, existing research primarily focuses on
Android applications based on Java/Kotlin, overlooking other
programming languages that are increasingly popular in An-
droid development, such as Dart, used by the Flutter framework.
This oversight has led to significant effectiveness challenges
when dealing with modern Android applications.

VII. CONCLUSION

In this paper, we introduce GlassWing, the first approach for
conducting a tailored static analysis of Flutter Android apps,
which enhances cross-language communication between the
native Android platform and the Flutter framework. Our work
lays the foundation for future developments to advance the
static analysis of Flutter apps.
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